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SPECIAL F E A T U R E S  OF H Y P E R S O N I C  F L O W  
OVER BLUNT BODIES WITH E X C I T A T I O N  
OF INTERNAL D E G R E E S  OF F R E E D O M  
IN THE GAS 

G. A. Tarnavskii and S. I. Shpak UDC 533.6 

The speckd features of hypersonic gas .flow over blunt bodies with excitation of additional degrees of 
.~'eedom (vibrational or electronic) are studied using computer modeling based on numerical integra- 
tion of the nonstationarv system of complete Navier-Stokes equations. Calculations over a wide range 
of detetwtining paranteters indicated the existence of regions of weak and strong flow instabilities in 
gases with small effective adiabatic exponents .[:or finite disturbances of the parameters in the incident 
.~OW. 

Experimental investigations [I-4] have established the fact of the instability of fairly high-intensity 
shock waves in some gases (carbon dioxide, argon, xenon, and Freons 12 and 14), which manifests itself in the 
torm of nonuniformities at the front of the Ibrward shock and in the shock layer of the gas or even in destruc- 
tion of the forepart of  the shock wave, depending on the parameters of the incident flow and the shape of  the 

surface of the body in the flow. All the problems that differ substantially in formulation [1-4] (motion of 
shock waves in channels and hypersonic flow over bodies with formation of a detached forward shock) are 
unified by the fact that the instabilities and destruction of  the shocks are related to excitation of additional 
degrees of freedom in the working fluids, specifically, rotational and vibrational ones in high-molecular-weight 
gases and electronic ones in monatomic gases. Similar phenomena were also observed in [5, 61. 

The physical mechanism of these processes, which leads to the instability of shocks in the flow field, 
is little understood. The interpretation of the appearance of  the instability relies mainly on the version of 
"pumping" of the kinetic energy of the gas flow ill a shock into internal degrees of  freedom and of anomalous 
relaxation behind the shock front. This furnishes, to some extent, an explanation of the appearing energy dis- 
balance and, correspondingly, the shock-tree flow deceleration at certain values of the determining parameters. 
Actually, a correction to the equation of state is assumed, as, for example, in [7], with account for collective 
interactions between the particles in an ionized plasma (or a high-molecular-weight gas with excited vibrational 
degrees of freedom that are locally concentrated in space, for example, behind the shock front). This version 
of the process seems fairly reasonable, and the current work aims at studying the mechanical-mathematical 
aspect of the manifestation of the anomaly of the gasdynamic structures (specifically, the instability of  the 
shocks) based on computer modeling of continuum flows using a program complex that has been well tried-out 
on a wide class of problems and a special technology for organizing and tracking the calculations [8, 9]. 

An extensive series of  computational experiments was performed as follows. Consideration was given 
to supersonic flow of a viscous heat-conducting gas over the spherical blunt forepart of a body. In the region 
bounded by the surface of the heat-insulated body, the forward shock (whose position and configuration were 
sought during the solution), and the outlet boundary, we integrated numerically the nonstationary system of 
Navier-Stokes equations in the traditional dimensionless torm with the determining parameters M~, Re~, Pr, 
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and y. The parameters Re= and Pr were fixed (Re~ = 104 and Pr = 0.72) over the entire experimental series, 
and M= and y were varied over the ranges 2 < M~ < 50 and 1.01 < "f< 1.4. This system was closed by a quasi- 
equilibrium equation of state written in the form of the equation of  state for a perfect gas with a variable Y- 

The question of the variation of ~/was determined in accordance with the following considerations. It 

is well known that y in a perfect gas is related to the number f of  excited degrees of  freedom of the gas 

molecules (atoms) as ~/= ( f+  2)/f = I + 2/.f. For a monatomic gas with only the translational degrees of  free- 

dom excited, f = 3, and, correspondingly, ~/= 1.667. In air, which consists mainly of  diatomic molecules, at not 
too high temperatures two rotational degrees of freedom, are excited in addition to the translational degrees of  

freedom, f = 5 and T = 1.4. For high-molecular-weight compounds,  a temperature rise entails excitation of 
additional vibrational degrees of  freedom (these being electronic in monatomic gases). By averaging over N 
ensembles of molecular (atomic) groups that consist of ni particles with number f- of  excited degrees of  free- 

N N 

dom, we determine the "effective" adiabatic exponent, fr = ~., nil;/~_~ hi, yetf = I + 2/fr with continuous vari- 

i=1 i=1 

ation in the range from 1 for f - -+  ~ to 5/3 for f =  3. In the integrated system of equations we used precisely 

Teff (subsequently, the subscript eft" is omitted lbr brevity). 
All the computational experiments were broken down into groups. Each group was characterized by a 

single fixed value of M= and variation of g. The calculation in a group started with the value Yi = 1.667 and 
was carried out until the solution (stationary, quasistationary, or nonstationary) was obtained. Next, the calcu- 
lation was performed with a decreased value y = Y2 using the results of  the previous calculation as the initial 
gasdynamic fields of the nonstationary problem. This mathematical formulation of the initial data complies 

with the physical condition of sudden flight of a body into a gas medium with different properties or of  a 
certain degree of disturbance of  the parameters in the flow field. The calculation step 8), = (yi-Yi-t) in a group 
is decreased with Yi to retain the same degree of pressure disturbance in a normal shock. Then, the value of  
M= was changed and the cycle of  calculations with variation of y was repeated. 

Completion of the calculation in a group was determined by the achievement of  one of three goals. A 

stationary solution of the nonstationary system of Navier-Stokes equations, if it existed, was obtained using the 
method of transition to a steady state. The solution convergence that provides an accuracy of the transition to 
a steady state e = 10 -3 was determined by two criteria: a "near" criterion I(f "+l -.f")/'cfnl < e on successive time 
layers n and n + 1 and a "distant" criterion t(f ''+N - f") /x f 'q  < e on time layers that are spaced appreciably with 
the interval N. The second criterion was used for sorting out steady-state solutions from so-called "creeping" 
solutions, where, with the fulf i l lment of  the first criterion, a solution can markedly  change with t ime 

("pseudotransition to a steady state"). In this computational series, in the capacity o f f  we selected the density 
p as the quantity that reaches a steady state most slowly, and N was taken to be equal to 50-100, depending 
on the situation (see [10] for details). Steady-state quasiperiodic and self-oscillatory modes were controlled on 
a large time interval that contained 10-15 periods (quasiperiods) o f  oscillations of  the solution about a certain 
"mean" line whose degree of transition to a steady state was controlled by two criteria that are similar to the 
above ones for stationary situations (see [ 10]). Unsteady modes that lead to intense oscillations of the solution 
were interpreted as incompatible with the problem formulation ("the external boundary is unstable and cannot 

be a steady shock wave"). 
Figure 1 presents integrally the results of the entire cycle of  computational experiments. On the (~, y) 

plane, where {x = 1/M~, the boundaries of a change in the flow modes are given. Curve 1 represents the 
boundary that separates the region of  steady mode I from the region of  quasiperiodic self-oscillatory modes II, 
and curve 2 additionally isolates the region of possible unsteady modes Ili (boundary 1 was marked starting 
with the appearance of 5%, in amplitude, density oscillations in the flow, and boundary 2 was marked starting 
with the appearance of about 50% oscillations of the numerical solution relative to a 10% disturbance of the 
initial parametric field). Additionally, the dashed curve in the figure marks the stability boundary, taken from 
[11], that separates the region where strong discontinuities are always (in a linear analysis) stable relative to 
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Fig. 1. Boundaries of a change in the flow mode. 

small perturbations from the region where a linear analysis is "inappropriate and unsteady modes can appear." 
This result correlates well with the results of the current work. 

Analyzing the position of the curves in the (0~, y) plane, it is possible to draw several conclusions. 
First, with increase in M~, the flow can be destabilized at higher y, i.e., at earlier stages of excitation of  addi- 
tional degrees of freedom. Second, instabilities of shock waves and flows behind them manifest themselves 
only in high-velocity flows (M~ > 3), which is consistent with the conclusions of [1-4]. 

The figure plots two points from the experimental work [1]. The light point marks the position of  a 
point of weak instability (small-amplitude disturbances), and the dark point marks the position of a point of 
strong instability (destruction of the forward shock). While there is a noticeable difference in the formulation 
of the physical and computational experiments, the results of both works are in good qualitative agreement. For 
further investigation of this problem, in numerical modeling, the equation of state of a perfect gas that closes 
the Navier-Stokes system should, obviously, be adjusted to another equation, for example, of the van der 
Waals type or of the type of [7]. 

N O T A T I O N  

M = U/a, Mach number; Re = pUR/g,  Reynolds number; Pr = ~.ICI,/Z, Prandtl number; U, flow ve- 
locity; a, velocity of sound in the flow; p, gas density; R, characteristic dimension (radius of the spherical 
bluntness of the body in the flow); g, dynamic viscosity; Cp, specific heat of the gas at constant pressure; Z, 
thermal diffusivity; y, adiabatic exponent; f,  number of excited degrees of  freedom of the gas; By, step of  the 
numerical calculation with respect to y. Subscripts: co, incident undisturbed flow; r, mean value; elf, effective 
value; i, number of the numerical calculation. 
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